English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Virology 1991-Apr

A prominent antigenic surface polypeptide involved in the biogenesis and function of the vaccinia virus envelope.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J Gordon
A Mohandas
S Wilton
S Dales

Keywords

Abstract

Polypeptides of the vaccinia virus envelope exposed on the surface were identified by means of sulfo-N-hydroxysuccinimidobiotin as a surface tag. Among surface expressed polypeptides is the 35-kDa antigen, previously designated Ag35. Both monoclonal (mAb) and monospecific affinity pure antibodies directed against Ag35 neutralized vaccinia infectiousness, indicating that this prominent surface antigen has a function during early virus-host cell interactions. The binding of several monoclonal antibodies to various regions of Ag35 was tested by reacting CNBr fragments, derived from the polypeptide, employing Western blotting. All mAbs tested reacted with the same region of Ag35. Estimation of the molecular weights (MW), based on migration of the CNBr peptides in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, revealed that those partial digestion products which contained a proline-rich 99 amino acid limit digest fragment were present at a position approximately 12.5 kDa larger than that predicted from the DNA sequence. By contrast, partial and limit digest products lacking the proline-rich fragment migrated to the MW position expected from the length of the DNA sequence. This observation demonstrates that departure from a predicted 22.3 kDa to an anomalous MW of Ag35 is conferred by the proline-rich peptide. The surface location of Ag35 was confirmed by immune electron microscopy. In a competition test the binding specificity of mAb and affinity-purified antibodies at the surface of virions could be demonstrated. Evidence for an association of Ag35 with the virus envelope at various stages during biogenesis of vaccinia was obtained by immune electron microscopy of whole mounts and thin sections. Presence of Ag35 as an early component of immature and mature virions, probably residing in the bilayer membrane structure was detected. A distinction can, therefore, be made between Ag35 and several other vaccinia envelope polypeptides which are synthesized as late functions and added during late stages of envelope assembly.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge