English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Pharmaceutics 2019-Feb

A "Ship-in-a-Bottle" strategy to create folic acid nanoclusters inside the nanocages of γ-cyclodextrin metal-organic frameworks.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jian Xu
Li Wu
Tao Guo
Guoqing Zhang
Caifen Wang
Haiyan Li
Xue Li
Vikramjeet Singh
Weidong Chen
Ruxandra Gref

Keywords

Abstract

Assembled between γ-cyclodextrins (CD) and potassium ions, γ-cyclodextrin metal-organic frameworks (CD-MOF) create spatially extended and ordered cage-like structures. Herein, it was demonstrated that folic acid (FA), a model molecule, could be densely packed inside CD-MOF reaching 2:1 FA:CD molar ratio. This "Ship-in-a-Bottle" strategy leads to a 1450 fold increase of the apparent solubility of FA. Moreover, the bioavailability of FA inside CD-MOF in rats was enhanced by a factor of 1.48 as compared to free FA. The unique mechanism of FA incorporation in the CD-MOF 3D network was also explored, which was different from the conventional CD inclusion complexation. Taylor dispersion investigations indicated that FA was incorporated on the basis of a two-component model, which was further supported by a set of complementary methods, including SEM, XRPD, BET, SR-FTIR, SAXS and molecular simulation. The hypothesized mechanism suggested that: i) tiny FA nanoclusters formed inside the hydrophilic cavities and onto the surface of CD-MOF and ii) FA was included inside dual-CD units in CD-MOF. In a nutshell, this dual incorporation mechanism is an original approach to dramatically increase the drug apparent solubility and bioavailability, and could be a promising strategy for other poorly soluble drugs.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge