English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pharmacology and Experimental Therapeutics 2003-Sep

A selective and oral small molecule inhibitor of vascular epithelial growth factor receptor (VEGFR)-2 and VEGFR-1 inhibits neovascularization and vascular permeability.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Neela Patel
Li Sun
Deborah Moshinsky
Hui Chen
Kathleen M Leahy
Phuong Le
Katherine G Moss
Xueyan Wang
Audie Rice
Danny Tam

Keywords

Abstract

Vascular endothelial growth factor (VEGF) is a key driver of the neovascularization and vascular permeability that leads to the loss of visual acuity in diabetic retinopathy and neovascular age-related macular degeneration. Our aim was to identify an orally active, selective small molecule kinase inhibitor of vascular endothelial growth factor receptor (VEGFR)-2 with activity against both VEGF-induced angiogenesis and vascular permeability. We used a biochemical assay to identify 3-[5-methyl-2- (2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrol-3-yl]-proprionic acid (SU10944), a pyrrole indolinone, which is a potent ATP-competitive inhibitor of VEGFR-2 (Ki of 21 +/- 5 nM). In cellular assays, SU10944 inhibited VEGF-induced receptor autophosphorylation (IC50 of 227 +/- 80 nM) as well as downstream signaling (IC50 of 102 +/- 27 nM). In biochemical assays, SU10944 exhibits potent inhibitory activity against VEGFR-1; weak activity against other related subgroup members, including stem cell factor receptor (SCFR), platelet-derived growth factor receptor beta (PDGFRbeta), and fibroblast growth factor receptor-1 (FGFR-1); and no detectable activity against other protein tyrosine kinases such as epidermal growth factor receptor (EGFR), Src, and hepatocyte growth factor receptor. In cellular assays, the selectivity for SU10944 to inhibit VEGFR is maintained compared with other tyrosine kinases (IC50 for SCFR of 1.6 +/- 0.3 microM, for PDGFRbeta of 30.6 +/- 13.3 microM, for FGFR-1 of >50 microM, and for EGFR of >50 microM). Upon oral administration, SU10944 gave a clear dose response in the corneal micropocket model with an ED50 value for inhibition of neovascularization of approximately 30 mg/kg and a maximum inhibition of 95% at 300 mg/kg. Similarly, upon oral administration in the Miles assay, SU10944 potently inhibited VEGF-induced vascular permeability. Our data indicate that small molecule inhibitors of VEGFR signaling have the potential to ameliorate VEGF-induced neovascularization as well as vascular permeability.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge