English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Analyst, The 2015-Aug

A simple and visible colorimetric method through Zr(4+)-phosphate coordination for the assay of protein tyrosine phosphatase 1B and screening of its inhibitors.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Juan Zhang
Jun Lv
Xiaonan Wang
Defeng Li
Zhaoxia Wang
Genxi Li

Keywords

Abstract

Inhibitors of protein tyrosine phosphatase 1B (PTP1B) are promising agents for the treatment of type 2 diabetes and obesity, so a colorimetric method has been developed in this work for PTP1B assay and screening of its inhibitors. The method is based on the chelation effect of zirconium (Zr(4+)) ions on the phosphate group, which may induce aggregation of 4-aminophenylphosphate-functionalized gold nanoparticles (APP/AuNPs) and the corresponding color change of the testing solution. Owing to the dephosphorylation of PTP1B, the aggregation of AuNPs will be influenced by PTP1B since there is no coordination reactivity between Zr(4+) ions and 4-aminophenol, the hydrolyzed product of APP catalyzed by the enzyme. Therefore, a simple colorimetric method for the assay of PTP1B activity can be developed. Under the optimized experimental conditions, the ratios of absorbance at a wavelength of 650 nm to that at 522 nm vary linearly with the PTP1B activity in the range from 0.005 to 0.18 U mL(-1) with the lowest detection limit of 0.0017 U mL(-1). Moreover, using this proposed method, the inhibition effect of 6-chloro-3-formyl-7-methylchromone, betulinic acid, ursolic acid, and sodium orthovanadate on PTP1B activity can be tested with IC50 values of 10, 13, 9, and 1.1 μM, respectively. Therefore, this new method has great potential not only for the detection of PTP1B activity but also for the screening of the inhibitors.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge