English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Inorganic Chemistry 2004-May

A systematic evaluation of molecular recognition phenomena. 4. Selective binding of dicarboxylic acids to hexaazamacrocyclic ligands based on molecular flexibility.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Carmen Anda
Antoni Llobet
Arthur E Martell
Joseph Reibenspies
Emanuela Berni
Xavier Solans

Keywords

Abstract

The host-guest interaction between four hexaaza macrocyclic ligands (3,6,9,17,20,23-hexaazatricyclo[23.3.1.1]triaconta-1(29),11,13,15 (30),25(27)-hexaene (Bd), 3,6,9,16,19,22-hexaazatricyclo[22.2.2.2]triaconta-1(27),11(30),12,14(29),24(28),25-hexaene (P2), 3,7,11,19,23,27-hexaazatricyclo[27.3.1.1]tetratriaconta-1(33),13, 15,17(34),29,31-hexaene (Bn), 3,7,11,18,22,26-hexaazatricyclo[26.2.2.2]tetratriaconta-1(31),13(34),14,16(33),28(32),29-hexaene (P3)) and two dicarboxylic acids (oxalic acid, H2Ox; oxydiacetic acid, H2Od) have been investigated using potentiometric equilibrium methods. Ternary complexes are formed in aqueous solution as a result of hydrogen bond formation and Coulombic interactions between the host and the guest. In the [(H6P2)(Ox)]4+ complex those bonding interactions reach a maximum yielding a log KR6 of 6.08. This species has been further characterized by means of X-ray diffraction analysis showing that the oxalate guest molecule is situated inside the macrocyclic cavity of the P2 host. X-ray diffraction analysis has also been carried out for the complex [(H6Bn)(Od)2](Br)2.6H2O, where now the oxydiacetate is bonded to the host but outside the macrocyclic cavity. Competitive distribution diagrams and total species distribution diagrams are used to graphically illustrate the most salient features of these systems, which are the following: (a) The Bd and P2 ligands bind Ox significantly much more stronger than Od. This is clearly manifested for the P2:Ox:Od competitive system, where a selectivity of 92.5% in favor of the P2-Ox complexation against P2-Od is obtained at p[H] = 2.8. (b) No isomeric effect is found when comparing binding capacities of oxalate with two isomeric ligands such as P2 and Bd since their affinity to bind the substrate is relatively similar. (c) Bn and P3 ligands have a similar behavior as described in (a) for P2 and Bd except that due to the increase of cavity size the differentiation becomes smaller. (d) Less basic ligands containing two methylenic units Bd (log betaH6 = 40.42) and P2 (40.42) bind stronger to the substrates than those containing three methylenic units Bn (50.32) and P3 (50.64) even though their relative predominance depends on p[H].

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge