English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pharmaceutical and Biomedical Analysis 2018-Aug

A validated UPLC-MS/MS method for the quantitation of an unstable peptide, monocyte locomotion inhibitory factor (MLIF) in human plasma and its application to a pharmacokinetic study.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Xuemei Liu
Pei Hu
Yongsheng Wang
Xizhu Wang
Jinghua Huang
Jin Li
Cheng Li
Hongyun Wang
Ji Jiang

Keywords

Abstract

Monocyte locomotion inhibitory factor (MLIF, Met-Gln-Cys-Asn-Ser), a pentapeptide with anti-inflammatory activity, was developed for neural protection in acute ischemic stroke. Determination of MLIF in human plasma samples is of great importance for pharmacokinetic evaluation in clinical studies. A reliable and sensitive method based on ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) was established for the measurement of MLIF in human plasma. Instability of peptide in matrix was the primary challenge in method development, which was properly resolved by addition of acidification reagents like sulfuric acid. Samples were prepared by protein precipitation and then analyzed using a gradient chromatographic separation over an ACQUITY UPLC HSS T3 column. The mobile phase consisted of acetonitrile containing 0.2% formic acid and water containing 0.2% formic acid and gradient elution was performed at a flow rate of 0.4 mL/min. Detection was carried out on a Xevo TQ-S tandem mass spectrometer and positive electrospray ionization was employed in the multiple reaction monitoring (MRM) mode. This method was fully validated over the concentration range of 0.5-40 ng/mL with a lower limit of quantification (LLOQ) of 0.5 ng/mL. The inter- and intra-batch precision was no more than 8.8% and the accuracy was between 88.7 and 104.2%. The mean extraction recovery was 43.3% and the detection was independent of matrix. Besides, the analyte proved to be stable under various handling processes and storage conditions after acidification. Finally, the method was applied to the first-in-human (FIH) study of MLIF in Chinese healthy subjects.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge