English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Frontiers in Plant Science 2019

Accumulation of Anthocyanins: An Adaptation Strategy of Mikania micrantha to Low Temperature in Winter.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Qilei Zhang
Junjie Zhai
Ling Shao
Wei Lin
Changlian Peng

Keywords

Abstract

The accumulation of anthocyanins in leaves and stems of Mikania micrantha improves its adaptability to low-temperature environments during winter in areas where this species is invasive. The accumulation of anthocyanins in M. micrantha causes the plants to exhibit red coloration when encountering low-temperature environments during winter. Many studies have reported that the accumulation of anthocyanins near the plant surface filters light and improves photoprotection. However, the results of this study showed that the main role of anthocyanins accumulation in M. micrantha during winter was to increase both antioxidant capability and tolerance to low temperature. The results showed that the anthocyanin contents were significantly higher in red leaves and stems than in green leaves and stems, with more than 60-fold greater content in red leaves than in green leaves. In addition, the total antioxidant capability was significantly greater in red leaves and stems than in green leaves and stems. After 4°C treatment for 12 h, a large amount of reactive oxygen species accumulated in green leaves and stems, and the maximum photochemical efficiency decreased significantly. Compared with that of the green leaves, the net photosynthetic rate of red leaves was significantly higher. The biomass statistics revealed that the dry matter accumulation of M. micrantha plants with relatively large amounts of anthocyanins was significantly greater than that of plants with relatively low anthocyanin levels during the same period. Our results suggest that the accumulation of anthocyanins during winter is an adaptation strategy of M. micrantha to low winter temperatures.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge