English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2000-Jun

Accumulation of a maize proteinase inhibitor in response to wounding and insect feeding, and characterization of its activity toward digestive proteinases of Spodoptera littoralis larvae.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M C Tamayo
M Rufat
J M Bravo
B San Segundo

Keywords

Abstract

The mpi gene encodes a maize proteinase inhibitor (MPI) protein whose mRNA accumulates in response to mechanical wounding. In this study, mpi gene expression in response to different types of damage was investigated. In mechanically damaged leaves of maize (Zea mays L.), mpi mRNA accumulation was affected by the degree of damage inflicted on the leaf. Consecutive wounds resulted in higher levels of mpi transcripts. The MPI protein was expressed in Escherichia coli and purified. Polyclonal antibodies were then produced and used to study MPI accumulation in insect-wounded and mechanically wounded maize leaves. When larvae of the lepidopteran insect Spodoptera littoralis were fed on maize leaves, MPI accumulated in tissues adjacent to the wound site. The level of inhibitor accumulation was higher in leaves chewed by larvae than in leaves that had been damaged mechanically. Longer feeding periods also resulted in higher levels of MPI accumulation. Additionally, the inhibitory properties of MPI toward mammalian and insect digestive serine proteinases were determined. Contrary to the majority of the plant proteinase inhibitors described, MPI is an inhibitor of mammalian elastase that only weakly inhibits mammalian chymotrypsin. However, both elastase and chymotrypsin-like activities from the larval midgut of S. littoralis were effectively inhibited by MPI. We discuss these results with regard to the function and evolution of plant proteinase inhibitors. The availability of a plant proteinase inhibitor which is able to inhibit the two types of insect digestive proteinase, elastase and chymotrypsin, might be useful for engineering protection against lepidopteran insect pests in transgenic plants.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge