English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology 2000-Feb

Acetylcholine/dopamine interaction in planaria.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
F R Buttarelli
F E Pontieri
V Margotta
G Palladini

Keywords

Abstract

Planaria represents the most primitive example of centralization and cephalization of nervous system. Previous reports indicate that planaria shows specific behavioral patterns, analogous to mammalian stereotypes, in response to drugs acting on acetylcholine or dopamine transmission. Here we further characterized these responses, and investigated the interactions between cholinergic and dopaminergic systems by means of behavioral methods. Exposure to cholinergic agonists physostigmine or nicotine produced hypokinesia with 'bridge-like' and 'walnut' positions, respectively. Blockade of muscarinic receptors by atropine produced 'screw-like' hyperkinesia. Exposure to dopamine agonists (nomifensine, apomorphine) produced marked hyperkinesia with 'screw-like' movements. Finally, exposure to dopamine antagonists produced immobility or 'bridge-like' position. Pre-exposure to physostigmine blocked the behavioral effects of nomifensine and reduced and markedly delayed the behavioral effects of apomorphine. Pre-exposure to apomorphine slightly reduced and delayed the behavioral changes by physostigmine. Finally, planaria exposed to atropine after either SCH23388 or sulpiride showed 'C-like' or 'screw-like' hyperkinesia, respectively. Thus, reduction of cholinergic transmission seems to play a pivotal role in determining hyperkinesia in planaria. Under these conditions, different patterns of hyperkinetic activities occur, according to the subpopulation of dopamine receptors stimulated by drugs. These findings suggest that interactions between cholinergic and dopaminergic systems occur very early in animal phylogeny.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge