English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Pharmacology 2009-Jan

Acetylsalicylic acid and salicylic acid decrease tumor cell viability and glucose metabolism modulating 6-phosphofructo-1-kinase structure and activity.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Guilherme A Spitz
Cristiane M Furtado
Mauro Sola-Penna
Patricia Zancan

Keywords

Abstract

The common observation that cancer cells present higher glycolytic rates when compared to control cells leads to the proposal of glycolysis as a potential target for the development of anti-tumoral agents. Anti-inflammatory drugs, such as acetylsalicylic acid (ASA) and salicylic acid (SA), present anti-tumoral properties, inducing apoptosis and altering tumor glucose utilization. The present work aims at evaluating whether ASA could directly decrease cell glycolysis through inhibition of the major regulatory enzyme within this pathway, 6-phosphofructo-1-kinase (PFK). We show that ASA and SA inhibit purified PFK in a dose-dependent manner, and that this inhibition occurs due to the modulation of the enzyme quaternary structure. ASA and SA promote the dissociation of the enzyme active tetramers into quite inactive dimers, a common regulatory mechanism of this enzyme. The inhibitory effects of ASA and SA on PFK are fully reversible and can be prevented or reverted by the binding of the enzyme to the actin filaments. Both drugs are also able to decrease glucose consumption by human breast cancer cell line MCF-7, as well as its viability, which decrease parallelly to the inhibition of PFK on these cells. In the end, we demonstrate the ability of ASA and SA to directly modulate an important regulatory intracellular enzyme, and propose that this is one of their mechanisms promoting anti-tumoral effects.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge