English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Naunyn-Schmiedeberg's Archives of Pharmacology 2018-Nov

Activation of NQO-1 mediates the augmented contractions of isolated arteries due to biased activity of soluble guanylyl cyclase in their smooth muscle.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Charlotte M S Detremmerie
Susan W S Leung
Paul M Vanhoutte

Keywords

Abstract

Earlier studies on isolated arteries demonstrated that the para-quinone thymoquinone, like acute hypoxia, induces augmentation of contractions, depending on biased activity of soluble guanylyl cyclase (sGC), generating inosine-3',5'-cyclic monophosphate (cyclic IMP) rather than guanosine-3',5'-cyclic monophosphate (cyclic GMP). NAD(P)H:quinone oxidoreductase 1 (NQO-1), the enzyme responsible for biotransformation of quinones into hydroquinones, was examined for its involvement in these endothelium-dependent augmentations, establishing a link between the metabolism of quinones by NQO-1 and biased sGC activity. Isolated arteries of Sprague-Dawley rats (aortae and mesenteric arteries) and farm pigs (coronary arteries) were studied for measurement of changes in tension and collected to measure NQO-1 activity or its protein level. β-lapachone, an ortho-quinone and hence substrate of NQO-1, increased the activity of the enzyme and augmented contractions in arteries with endothelium. This augmentation was inhibited by endothelium removal and inhibitors of endothelial NO synthase (eNOS), sGC, or NQO-1; in preparations without endothelium or treated with an eNOS inhibitor, it was restored by the NO donor DETA NONOate and by ITP and cyclic IMP, revealing biased sGC activity as the underlying mechanism, as with thymoquinone. Hydroquinone, the end product of quinone metabolism by NQO-1, augmented contractions depending on sGC activation but in an endothelium-independent manner. In coronary arteries, repeated acute hypoxia caused similar augmentations as those to quinones that were inhibited by the NQO-1 inhibitor dicoumarol. Augmentations of contraction observed with different naturally occurring quinones and with acute hypoxia are initiated by quinone metabolism by NQO-1, in turn interfering with the NO/biased sGC pathway, suggesting a possibly detrimental role of this enzyme in ischemic cardiovascular disorders.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge