English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology 2016-Sep

[Activation of autophagy pathway in hippocampus and deterioration of learning and memory ability by intermittent hypoxia in rats after cerebral ischemia].

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Xiangfei Guo
Yaning Zhao
Jianmin Li
Wenqian Liu
Changxiang Chen

Keywords

Abstract

Objective To investigate the effects of different duration of intermittent hypoxia on the autophagy pathway in the hippocampus and the learning and memory ability after cerebral ischemia in rats. Methods 100 male Wistar rats were randomly divided into sham operation (SO) group, ischemia/reperfusion (I/R) group, intermittent hypoxia for 7 days combined with ischemia/reperfusion (IH7-I/R) group, intermittent hypoxia for 14 days combined with ischemia/reperfusion (IH14-I/R) group, intermittent hypoxia for 21 days combined with ischemia/reperfusion (IH21-I/R) group, n =20 in each group. The rats in IH7-I/R group, IH14-I/R group and IH21-I/R group were respectively subjected to intermittent hypoxia for 7, 14 and 21 days prior to I/R modeling by improved Pulsinelli four-vessel occlusion (4-VO). The morphological changes of nerve cells in the hippocampus of rat brain were detected by HE staining; the levels of mammalian target of rapamycin (mTOR) and beclin 1 mRNA in the hippocampus were determined by quantitative real-time PCR; the distribution of mTOR and beclin 1 in the hippocampus was observed by immunohistochemistry; the learning and memory ability of rats was assessed by the Morris water maze test. Results Compared with the SO group, the never cell morphology was damaged, the number of survival neurons in the hippocampus was reduced, the expressions of mTOR and beclin 1 in the hippocampus were strengthened, and the learning and memory ability declined in the I/R group. Compared with the I/R group, the never cell morphology was damaged seriously, the number of survival neurons in the hippocampus decreased, the expressions of mTOR and beclin 1 in the hippocampus increased, and the learning and memory ability dropped in the intermittent hypoxia groups. What's more, the above changes were dependent on the duration of intermittent hypoxia. Conclusion Intermittent hypoxia aggravates the dysfunction of learning and memory after cerebral ischemia and the damages increase with time passing, which are related to mTOR-beclin 1 activation and increasing neuronal cell death.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge