English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Toxicological Sciences 2015-Oct

Activation of the Endoperoxide Ascaridole Modulates Its Sensitizing Capacity.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Nora L Krutz
Jennifer Hennen
Corinna Korb
Mario T Schellenberger
G Frank Gerberick
Brunhilde Blömeke

Keywords

Abstract

The monoterpene ascaridole, a fairly stable endoperoxide found in essential oils such as tea tree oil can provoke allergic contact dermatitis which has been evidenced under patch test conditions. However, concomitantly we observed irritative skin reactions that demand further data underlining the sensitization potential of ascaridole. Here, we studied the effects of ascaridole on dendritic cell (DC) activation and protein reactivity, 2 key steps of chemical-induced skin sensitization. Treatment of human monocyte-derived DC with ascaridole found support for full DC maturation, a capability of sensitizers but not irritants. It induced significant upregulation of the expression of the costimulatory molecules CD86, CD80, CD40, and the adhesion molecule CD54 in a time-dependent manner. Maturation was accompanied by release of proinflammatory cytokines interleukin (IL)-1ß, tumor necrosis factor-α, IL-6, and IL-8. Similar to other chemical skin sensitizers including hydroperoxides, we observed a certain reactivity of ascaridole toward cysteine- but not lysine-containing peptides. During recent years, evidence accumulated for a radical mechanism as trigger for protein reactivity of peroxides. Treatment of the fairly stable endoperoxide ascaridole with iron as radical inducer ("activated ascaridole") resulted in cysteine peptide reactivity exceeding by far that of ascaridole itself. Furthermore, activated ascaridole showed increased potential for induction of the Nrf2 target gene heme oxygenase 1 and upregulation of CD86 and CD54 on THP-1 cells, an established DC surrogate. These results indicate that radical formation could be involved in the steps leading to skin sensitization induced by the endoperoxide ascaridole.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge