English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2010-Oct

Activation of the nuclear receptor PPARγ by metabolites isolated from sage (Salvia officinalis L.).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
K B Christensen
M Jørgensen
D Kotowska
R K Petersen
K Kristiansen
L P Christensen

Keywords

Abstract

BACKGROUND

Salvia officinalis has been used as a traditional remedy against diabetes in many countries and its glucose-lowering effects have been demonstrated in animal studies. The active compounds and their possible mode of action are still unknown although it has been suggested that diterpenes may be responsible for the anti-diabetic effect of Salvia officinalis.

OBJECTIVE

To investigate whether the reported anti-diabetic effects of Salvia officinalis are related to activation of the nuclear receptor peroxisome proliferator-activated receptor (PPAR)γ and to identify the bioactive constituents.

METHODS

From a dichloromethane extract of Salvia officinalis able to activate PPARγ several major metabolites were isolated by chromatographic techniques. To assess bioactivity of the isolated metabolites a PPARγ transactivation assay was used.

RESULTS

Eight diterpenes were isolated and identified including a new abietane diterpene being the epirosmanol ester of 12-O-methyl carnosic acid and 20-hydroxyferruginol, which was isolated from Salvia officinalis for the first time, as well as viridiflorol, oleanolic acid, and α-linolenic acid. 12-O-methyl carnosic acid and α-linolenic acid were able to significantly activate PPARγ whereas the remaining metabolites were either unable to activate PPARγ or yielded insignificant activation.

CONCLUSIONS

Selected metabolites from Salvia officinalis were able to activate PPARγ and hence, the anti-diabetic activity of this plant could in part be mediated through this nuclear receptor.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge