English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Biology Reports 2019-Sep

Acute fluoride exposure alters myocardial redox and inflammatory markers in rats.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Lakshmikanthan Panneerselvam
Azhwar Raghunath
Kiruthika Sundarraj
Ekambaram Perumal

Keywords

Abstract

Acute fluoride (F-) exposure adversely impairs cardiac functions. We previously reported that acute F- toxicity causes modulation in oxidant and antioxidant systems, heat shock proteins, cytoskeletal proteins and AMPK signaling proteins in the myocardium of rats. With these findings, we hypothesized that acute F- intoxication may trigger an acute myocardial inflammatory response through the activation of NF-κB signaling and reduction of redox signaling regulatory system. To test this hypothesis, we treated male Wistar rats with single oral doses of 45 and 90 mg/kg of F- for 24 h. The myocardium of F- treated rats showed increased expression of pNF-κB, pIκKα/β eventually leading to the increased expression of downstream target TNFα-a major proinflammatory cytokine secreted in the inflammatory process. F- intoxication decreased the mRNA expression of redox genes-Sirt1, Sirt3, Prdx2, Glrx1, Trx1, and Trx2. In addition, we observed decreased protein expression of Nrf2, GCLC, and NQO1 in the cardiac tissues of F- treated rats. This study reveals that F- toxicity triggers myocardial inflammatory response and depletes redox signaling molecules in the myocardium of rats. We conclude that NF-κB activation with decreased redox gene expression might be associated with the pathophysiology of F- induced cardiac dysfunction in rats. This finding provides new insights into the cardiovascular pathophysiology in acute F- toxicity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge