English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiology and Behavior 2012-Jan

Acute hyperglycemia is related to gastrointestinal symptoms in motion sickness: an experimental study.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Feng-Feng Mo
Hai-Hong Qin
Xiao-Li Wang
Zhi-Lei Shen
Zheng Xu
Kai-Hua Wang
Yi-Ling Cai
Min Li

Keywords

Abstract

Motion sickness is caused by exposure to unfamiliar motions and typical symptoms of motion sickness include nausea and vomiting. To observe the metabolic and hormonal differences between nausea/vomiting (NAV) subjects and non-nausea/vomiting (NNV) ones, and to understand how the differences in metabolites and hormones affect the tolerance of organism to acceleration, 60 volunteers were exposed to repetitive acceleration using a 6-degree-of-freedom ship motion simulator. Meanwhile, 36 rats were randomly divided into three groups: an acceleration model group (n=14, exposed to acceleration), insulin group (n=14, intraperitoneal injection of insulin 30 min before exposure to acceleration), and control group (n=8). Gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF/MS) was applied to analyze the serum metabolites in human subjects. Serum glucocorticoid, insulin, and glucagon levels were determined by radioimmunoassay in the NAV and NNV subjects as well as in rats, and serum epinephrine level was determined by ELISA. After acceleration exposure, 9 metabolites, including L-histidine, L-ornithine, L-serine, L-tyrosine, pyroglutamic acid, fumaric acid, urea, n-dodecanoic acid and n-tetradecanoic acid, had different changes in the NAV and NNV groups. The serum levels of 4-hydroxy-L-proline, glucose, oleic acid and urea were significantly higher in the NAV group than in the NNV group after exposure; however, only the elevation degree of serum glucose was significantly greater in the NAV group than in the NNV group (P<0.05). Serum cortisol and epinephrine were increased in both groups. Before exposure, insulin level in the NAV group was significantly lower than that in the NNV group (P<0.05). After rotation exposure, rat serum glucose in the insulin group was significantly lower than that in the acceleration model group (P<0.001), and the motion sickness index was significantly lower than that in the acceleration model group (P<0.05). Our study provides the first evidence that stable glucose level can help to relieve gastrointestinal symptoms in motion sickness, and suggests that acute hyperglycemia is related to gastrointestinal symptoms in motion sickness.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge