English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical laboratory science : journal of the American Society for Medical Technology 2004

Advances in acute lymphoblastic leukemia.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Tim R Randolph

Keywords

Abstract

METHODS

Current literature.

RESULTS

Acute lymphoblastic leukemia (ALL) is a stem cell disorder characterized by an overproduction of lymphoblasts in the bone marrow that eventually spill into circulation, producing lymphocytosis. As with the other acute leukemias, the most common symptoms experienced by patients include fatigue, bleeding, and recurrent infections resulting from the suppression of normal hematopoiesis in the bone marrow by the accumulating blasts. ALL primarily affects children and exhibits the best response to standard chemotherapy as compared to acute myeloblastic leukemias (AML). Further, remission rates are highest among ALL patients, many of whom are experiencing sustained remissions suggesting cure. In light of early treatment successes, researchers began to investigate modifications of standard treatment regimens to accommodate variability in weight, age, and response to therapy among children with ALL. Individualized treatment plans were implemented where some patients received a reduced intensity course of therapy to minimize drug toxicity while others received drug intensification to maximize response. More recently, research efforts have been directed at the elucidation of leukemogenic mechanisms implicated in ALL to identify specific protein mutants that can be used to design drugs tailored to interfere with the activity of these mutant protein targets. Identification of chimeric proteins produced from chromosomal translocations and gene expression profiles from microarray analyses are the primary techniques used to identify the potential therapeutic targets.

CONCLUSIONS

Several reliable prognostic indicators have been identified and are being used to improve therapeutic planning and outcome prediction in ALL patients. Individualized treatment regimens have been developed based on the specific characteristics of each patient to minimize treatment related adverse events and maximize response. Through the use of cytogenetic, molecular, and microarray testing, ALL classification schemes have improved and potential therapeutic targets have been identified. It is anticipated that the next major advance in the treatment of ALL will involve the use of designer therapies developed to specifically interfere with particular molecular abnormalities producing the leukemogenic aberration to the normal signal transduction pathways.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge