English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Pharmacology 2015-Sep

Aegeline from Aegle marmelos stimulates glucose transport via Akt and Rac1 signaling, and contributes to a cytoskeletal rearrangement through PI3K/Rac1.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Sudeep Gautam
Nayab Ishrat
Rohit Singh
Tadigoppula Narender
Arvind K Srivastava

Keywords

Abstract

Aegeline is an alkaloidal-amide, isolated from the leaves of Aegle marmelos and have shown antihyperglycemic as well as antidyslipidemic activities in the validated animal models of type 2 diabetes mellitus. Here we delineate, aegeline enhanced GLUT4 translocation mediated 2-deoxy-glucose uptake in both time and concentration-dependent manner. 2-deoxy-glucose uptake was completely stymied by the transport inhibitors (wortmannin and genistein) in C2C12 myotubes. Pharmacological inhibition of Akt (also known as protein kinase B) and Ras-related C3 botulinum toxin substrate 1 (Rac1) suggest that both Akt and Rac1 operate aegeline-stimulated glucose transport via distinct parallel pathways. Moreover, aegeline activates p21 protein-activated kinase 1 (PAK1) and cofilin (an actin polymerization regulator). Rac1 inhibitor (Rac1 inhib II) and PAK1 inhibitor (IPA-3) completely blocked aegeline-induced phosphorylation of cofilin and p21 protein-activated kinase 1 (PAK1). In summary, these findings suggest that aegeline stimulates the glucose transport through Akt and Rac1 dependent distinct parallel pathways and have cytoskeletal roles via stimulation of the PI3-kinase-Rac1-PAK1-cofilin pathway in the skeletal muscle cells. Therefore, multiple targets of aegeline in the improvement of insulin sensitivity of the skeletal muscle cells may be suggested.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge