English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Kidney International 2003-Jan

Affinity adsorption of glucose degradation products improves the biocompatibility of conventional peritoneal dialysis fluid.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Naoyoshi Ishikawa
Toshio Miyata
Yasuhiko Ueda
Reiko Inagi
Yuko Izuhara
Hiroko Yuzawa
Hiroshi Onogi
Makoto Nishina
Masaomi Nangaku
Charles Van Ypersele De Strihou

Keywords

Abstract

BACKGROUND

Reactive carbonyl compounds (RCOs) present in peritoneal dialysis (PD) fluid have been incriminated in the progressive deterioration of the peritoneal membrane in long-term PD patients. They are initially present in fresh conventional heat-sterilized glucose PD fluid and are supplemented during dwell time by the diffusion of blood RCOs within the peritoneal cavity. In the present study, RCO entrapping agents were immobilized on affinity beads to adsorb RCOs both in fresh PD fluid and in PD effluent.

METHODS

The RCO trapping potential of various compounds was assessed in vitro first by dissolving them in the tested fluid and subsequently after coupling with either epoxy- or amino-beads. The tested fluids include fresh heat-sterilized glucose and non-glucose PD fluids, and PD effluent. Their RCOs contents, that is, glyoxal (GO), methylglyoxal (MGO), 3-deoxyglucosone (3-DG), formaldehyde, 5-hydroxymethylfuraldehyde, acetaldehyde, and 2-furaldehyde were monitored by reverse-phase high-pressure liquid chromatography. The biocompatibility of PD fluid was assessed by a cytotoxic assay with either human epidermoid cell line A431 cells or with primary cultured human peritoneal mesothelial cells.

RESULTS

Among the tested RCO entrapping agents, hydrazine coupled to epoxy-beads proved the most efficient. It lowered the concentrations of three dicarbonyl compounds (GO, MGO, and 3-DG) and those of aldehydes present in fresh heat-sterilized glucose PD fluid toward the low levels observed in filter-sterilized glucose PD fluid. It did not change the glucose and electrolytes concentration of the PD fluid but raised its pH from 5.2 to 5.9. Hydrazine-coupled epoxy-bead also lowered the PD effluent content of total RCOs, measured by the 2,4-dinitrophenylhydrazone (DNPH) method. The cytotoxicity of heat-sterilized PD fluid incubated with hydrazine-coupled epoxy-beads was decreased to the level observed in filter-sterilized PD fluid as the result of the raised pH and the lowered RCOs levels.

CONCLUSIONS

Hydrazine-coupled epoxy-beads reduce the levels of a variety of dicarbonyls and aldehydes present in heat-sterilized glucose PD fluid to those in filter-sterilized PD fluid, without altering glucose, lactate, and electrolytes contents but with a rise in pH. Incubated with PD effluents, it is equally effective in reducing the levels of serum-derived RCOs. RCO entrapping agents immobilized on affinity beads improve in vitro the biocompatibility of conventional heat-sterilized glucose PD fluid. Their clinical applicability requires further studies.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge