English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2018-Jun

Alisma canaliculatum ethanol extract suppresses inflammatory responses in LPS-stimulated macrophages, HCl/EtOH-induced gastritis, and DSS-triggered colitis by targeting Src/Syk and TAK1 activities.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Han Gyung Kim
Mi-Yeon Kim
Jae Youl Cho

Keywords

Abstract

BACKGROUND

Alisma canaliculatum A.Braun & C.D.Bouché, distributed in Korea, Japan, China, and Taiwan, is a traditional medicine. In particular, the stem and root of Alisma canaliculatum A.Braun & C.D.Bouché are prescribed to relieve various inflammatory symptoms resulting from nephritis, cystitis, urethritis, and dropsy.

OBJECTIVE

However, the curative mechanism of Alisma canaliculatum A.Braun & C.D.Bouché with respect to inflammatory symptoms is poorly understood. In this study, the curative roles of this plant in various inflammatory conditions as well as its inhibitory mechanism were aimed to examine using an ethanol extract (Ac-EE).

METHODS

Anti-inflammatory effects of Ac-EE were evaluated in lipopolysaccharide (LPS)-induced macrophages in vitro and HCl/EtOH-stimulated mouse model of gastritis and DSS-treated mouse model of colitis. To determine the potentially active anti-inflammatory components in this extracts, we employed HPLC. We also used kinase assays, reporter gene assay, immunoprecipitation analysis and target enzyme overexpressing cell analysis to analyze the molecular mechanisms and the target molecules.

RESULTS

This extract dose-dependently inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2) from RAW264.7 cells and peritoneal macrophages activated by lipopolysaccharide (LPS). Additionally, Ac-EE ameliorated inflammatory symptoms resulting from gastritis and colitis. Ac-EE down-regulated the mRNA levels of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-α, and cyclooxygenase-2 (COX-2). Ac-EE also blocked the nuclear translocation of nuclear factor (NF)-κB and activator protein (AP)- 1 in LPS-stimulated RAW264.7 cells. By analyzing the target signaling molecules activating these transcription factors, we found that Src and Syk, as well as molecular association between TAK1 and mitogen-activated protein kinase kinase 4/7 (MKK4/7), were targeted by Ac-EE.

CONCLUSIONS

Our data suggest that the Ac-EE NF-κB/AP-1-targeted anti-inflammatory potential is mediated by suppression of Src and Syk as well as the complex formation between TAK1 and its substrate proteins MKK4/7.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge