English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical and Biophysical Research Communications 2018-Nov

Alisol B-23-acetate, a tetracyclic triterpenoid isolated from Alisma orientale, induces apoptosis in human lung cancer cells via the mitochondrial pathway.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jinxia Wang
Haizhen Li
Xiaoning Wang
Tao Shen
Shuqi Wang
Dongmei Ren

Keywords

Abstract

Alisol B-23-acetate (AB23A), a tetracyclic triterpenoid isolated from the rhizome of Alisma orientale, has been reported to exert anti-proliferative activities in human colon, ovarian and gastric cancer cells. However, the anti-cancer effect of this compound on human lung cancer cells has not yet been thoroughly elucidated. In the present study, we investigated the effects of AB23A on the cell viability and apoptosis in human lung cancer A549 and NCI-H292 cells. The results indicated that AB23A inhibited the growth of A549 and NCI-H292 cells in dose- and time-dependent manner, however, there was only weak cytotoxicity on normal bronchial epithelial cells. The induction of apoptosis by AB23A was demonstrated by DAPI and annexin-V-FITC/PI staining. Further investigation revealed that AB23A decreased mitochondrial membrane potential (MMP) and up regulated reactive oxygen species (ROS) level. Meanwhile, the increased Bax/Bcl-2 ratio, activated caspase-3, caspase-9 and PARP were observed. In addition, AB23A increased the release of cytochrome c from mitochondria and the translocation of apoptotic inducing factor (AIF) into nuclei. Taken together, these results indicated that AB23A induced apoptosis by activating the intrinsic pathway, and suggested that AB23A can be used as a potential modulating agent in lung cancer.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge