English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Stroke and Cerebrovascular Diseases

Alpha 1-antitrypsin therapy mitigated ischemic stroke damage in rats.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Huong L Moldthan
Aaron C Hirko
Jeffrey S Thinschmidt
Maria B Grant
Zhimin Li
Joanna Peris
Yuanqing Lu
Ahmed S Elshikha
Michael A King
Jeffrey A Hughes

Keywords

Abstract

Our objective is to develop a new therapy for the treatment of stroke. Currently, the only effective therapy for acute ischemic stroke is the thrombolytic agent recombinant tissue plasminogen activator. α1-Antitrypsin (AAT), a serine proteinase inhibitor with potent anti-inflammatory, anti-apoptotic, antimicrobial, and cytoprotective activities, could be beneficial in stroke. The goal of this study is to test whether AAT can improve ischemic stroke outcome in an established rat model. Middle cerebral artery occlusion was induced in male rats via intracranial (i.c.) microinjection of endothelin-1. Five to 10 minutes after stroke induction, rats received either i.c. or intravenous delivery of human AAT. Cylinder and vibrissae tests were used to evaluate sensorimotor function before and 72 hours after middle cerebral artery occlusion. Infarct volumes were examined via either 2,3,5-triphenyltetrazolium chloride assay or magnetic resonance imaging 72 hours after middle cerebral artery occlusion. Despite equivalent initial strokes, at 72 hours, the infarct volumes of the human AAT treatment groups (local and systemic injection) were statistically significantly reduced by 83% and 63% (P < .0001 and P < .05, respectively) compared with control rats. Human AAT significantly limited sensory motor system deficits. Human AAT could be a potential novel therapeutic drug for the protection against neurodegeneration after ischemic stroke, but more studies are needed to investigate the protective mechanisms and efficacy in other animal models.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge