English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Journal 1996-Oct

Alteration of tobacco floral organ identity by expression of combinations of Antirrhinum MADS-box genes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
B Davies
A Di Rosa
T Eneva
H Saedler
H Sommer

Keywords

Abstract

Floral organ identity is largely controlled by the spatially restricted expression of several MADS-box genes. In Antirrhinum majus these organ identity genes include DEF, GLO and PLE. Single and double mutant analyses indicated that the type of organ found in a particular whorl is dependent on which combination of these genes is expressed there. This paper reports the ectopic expression of Antirrhinum organ identity genes, alone and in combinations, in transgenic tobacco. Although the phenotypes are broadly in agreement with the genetic predictions, several unexpected features are observed which provide information concerning the action of the organ identity genes. The presumed tobacco homologue of DEF, NTDEF, has been isolated and used to investigate the influence of ectopic expression of the Antirrhinum organ identity genes on the endogenous tobacco genes. Analysis of the spatial and temporal expression patterns of NTDEF and NTGLO reveals that the boundaries are not coincident and that differences exist in the regulatory mechanisms of the two genes concerning both induction and maintenance of gene expression. Evidence is provided which indicates that organ development is sensitive to the relative levels of organ identity gene expression. Expression of the organ identity genes outside the flower or inflorescence produced no effects, suggesting that additional factors are required to mediate their activity. These results demonstrate that heterologous genes can be used to predictably influence floral organ identity but also reveal the existence of unsuspected control mechanisms.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge