English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular and Cellular Proteomics 2002-May

Alterations in the mouse and human proteome caused by Huntington's disease.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Claus Zabel
Daniel C Chamrad
Josef Priller
Ben Woodman
Helmut E Meyer
Gillian P Bates
Joachim Klose

Keywords

Abstract

Huntington's disease is an autosomal dominantly inherited disease that usually starts in midlife and inevitably leads to death. In our effort to identify proteins involved in processes upstream or downstream of the disease-causing huntingtin, we studied the proteome of a well established mouse model by large gel two-dimensional electrophoresis. We could demonstrate for the first time at the protein level that alpha1-antitrypsin and alphaB-crystalline both decrease in expression over the course of disease. Importantly, the alpha1-antitrypsin decrease in the brain precedes that in liver and testes in mice. Reduced expression of the serine protease inhibitors alpha1-antitrypsin and contraspin was found in liver, heart, and testes close to terminal disease. Decreased expression of the chaperone alphaB-crystallin was found exclusively in the brain. In three brain regions obtained post-mortem from Huntington's disease patients, alpha1-antitrypsin expression was also altered. Reduced expression of the major urinary proteins not found in the brain was seen in the liver of affected mice, demonstrating that the disease exerts its influence outside the brain of transgenic mice at the protein level. Maintaining alpha1-antitrypsin and alphaB-crystallin availability during the course of Huntington's disease might prevent neuronal cell death and therefore could be useful in delaying the disease progression.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge