English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
The American journal of physiology 1991-Aug

Altered binding site for Ca2+ in the ryanodine receptor of human malignant hyperthermia.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
H H Valdivia
K Hogan
R Coronado

Keywords

Abstract

The binding properties of [3H]ryanodine, a specific ligand of the receptor complex that forms the Ca2+ release channel of sarcoplasmic reticulum, were studied in normal (N) and malignant hyperthermia-susceptible (MH) human skeletal muscle. Integrity of the solubilized ryanodine receptor was demonstrated by single-channel recordings in planar bilayers and by the changes produced by activators and inhibitors of the Ca2+ release channel on the binding properties of [3H]ryanodine. N and MH receptors were capable of binding [3H]ryanodine in a Ca(2+)-dependent manner. Scatchard analysis showed that a single binding site for [3H]ryanodine was present in either N or MH muscle. Binding affinity was approximately the same in N and MH (Kd approximately 7 nM), when the Ca2+ concentration was greater than 30 microM. At 0.3 microM Ca2+, MH receptors displayed a higher affinity for [3H]ryanodine (Kd = 4.1 +/- 1.0 nM) than N receptors (Kd = 7.1 +/- 0.8 nM). The presence of a single Kd for [3H]ryanodine in MH muscle, distinct from that of N muscle, indicated that MH muscle does not have detectable levels of N receptors. Ca2+ dependence of [3H]ryanodine binding further suggested that MH receptors had a higher affinity for Ca2+ (Kd[Ca2+] = 120 +/- 50 nM) than N receptors (Kd[Ca2+] = 250 +/- 80 nM). Caffeine increased [3H]ryanodine binding at submicromolar [Ca2+], and the effect was larger in MH. Apparent affinity constants for caffeine were 13 +/- 1.8 mM in N and 6 +/- 0.8 mM in MH receptors. Evidently, the ryanodine receptor of MH-susceptible human skeletal muscle has an unusually high sensitivity to Ca2+ which is augmented by caffeine.(ABSTRACT TRUNCATED AT 250 WORDS)

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge