English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Nephrology Dialysis Transplantation 2005-Sep

Altered status of glutathione and its metabolites in cystinotic cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Elena Levtchenko
Adriana de Graaf-Hess
Martijn Wilmer
Lambertus van den Heuvel
Leo Monnens
Henk Blom

Keywords

Abstract

BACKGROUND

Cystinosis is an autosomal recessive disorder, caused by mutations of the lysosomal cystine carrier cystinosin, encoded by the CTNS gene (17p13). The concomitant intralysosomal cystine accumulation leads to multi-organ damage, with kidneys being the first affected. Altered mitochondrial oxidative phosphorylation has been demonstrated in animal proximal tubules loaded with cystine dimethyl ester, mimicking cystine accumulation in cystinosis, but has not been confirmed in cells of patients with cystinosis. Furthermore, the link between cystine accumulation and mitochondrial damage is also missing. We hypothesized that cytosolic cysteine deficiency resulting in intracellular glutathione (GSH) shortage might be involved in cellular dysfunction in cystinosis.

METHODS

Components of the gamma-glutamyl cycle were measured in cultured skin fibroblasts (n = 9) and polymorphonuclear (PMN) leukocytes (n = 15) derived from patients with cystinosis and compared with the values in cultured fibroblasts (n = 9) and PMN cells (n = 18) of healthy controls.

RESULTS

Cystine content in cystinotic fibroblasts and PMN cells was significantly elevated compared with the controls, consistent with the lysosomal cystine accumulation in these cells. Although no reduction of total intracellular GSH content was found in cystinotic cells, it inversely correlated with cystine levels. Furthermore, GSH disulfide (GSSG) was elevated in cystinotic cells, resulting in an increased GSSG/total GSH (%) ratio. No relationship between intracellular cystine and GSH was found in control fibroblasts and PMN cells.

CONCLUSIONS

An elevated GSSG/total GSH (%) ratio might indicate increased oxidative stress present in cystinotic cells. Inverse correlation between cystine accumulation and intracellular GSH content indicates that under stress conditions such as intensive energy demand or increased oxidative insult, cystinotic cells may be more prone to GSH depletion.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge