English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cell Biology 1986-Sep

Amino-terminal deletion mutants of the Rous sarcoma virus glycoprotein do not block signal peptide cleavage but can block intracellular transport.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J M Hardwick
K E Shaw
J W Wills
E Hunter

Keywords

Abstract

Protein sequence requirements for cleavage of the signal peptide from the Rous sarcoma virus glycoprotein have been investigated through the use of deletion mutagenesis. The phenotypes of these mutants have been characterized by expression of the cloned, mutated env genes in CV-1 cells using a late replacement SV40 vector. The deletion mutations were generated by Ba131 digestion at the XhoI site located near the 5' end of the coding sequence for the structural protein gp85, which is found at the amino terminus of the precursor glycoprotein, Pr95. The results of experiments with three mutants (X1, X2, and X3) are presented. Mutant X1 has a 14 amino acid deletion encompassing amino acids 4-17 of gp85, which results in the loss of one potential glycosylation site. In mutants X2 and X3 the amino terminal nine and six amino acids, respectively, of gp85 are deleted. During the biosynthesis of all three mutant polypeptides, the signal peptide is efficiently and accurately cleaved from the nascent protein, even though in mutants X2 and X3 the cleavage site itself has been altered. In these mutants the alanine/aspartic acid cleavage site has been mutated to alanine/asparagine and alanine/glutamine, respectively. These results are consistent with the concept that sequences C-terminal to the signal peptidase site are unimportant in defining the site of cleavage in eucaryotes. Mutants X2 and X3 behave like wild-type with respect to protein glycosylation, palmitic acid addition, cleavage to gp85 and gp37, and expression on the cell surface. Mutant X1, on the other hand, is defective in intracellular transport. Although it is translocated across the rough endoplasmic reticulum and core-glycosylated, its transport appears to be blocked at an early Golgi compartment. No terminal glycosylation of the protein, cleavage of the precursor protein to the mature products, or expression on the cell surface is observed. The deletion in X1 thus appears to destroy signals required for export to the cell surface.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge