English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Antimicrobial Chemotherapy 2002-Feb

Amphotericin B: spectrum and resistance.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
David Ellis

Keywords

Abstract

Amphotericin B is a polyene macrolide antibiotic derived from the actinomycete Streptomyces nodosus. Of the 200 known polyene agents, amphotericin B is the only one with toxicities that are sufficiently limited to permit intravenous administration. All polyenes have a common mechanism of action in that they preferentially bind to ergosterol, the primary sterol in the fungal cell membrane. The consequence of this binding includes disruption of the osmotic integrity of the membrane, with leakage of intracellular potassium and magnesium, and also the disruption of oxidative enzymes in target cells. Amphotericin B has a relatively broad spectrum of action and is useful in treating cases of candidosis, cryptococcosis, histoplasmosis, blastomycosis, paracoccidioidomycosis, coccidioidomycosis, aspergillosis, extracutaneous sporotrichosis and mucormycosis, and some cases of hyalohyphomycosis and phaeohyphomycosis. Resistance (MIC > 2 mg/L) tends to be species-dependent and emerges uncommonly and slowly in isolates from patients treated with amphotericin B. These include some individual strains of Candida albicans, Candida tropicalis, Candida parapsilosis and Candida lusitaniae, which may acquire resistance during treatment. Some isolates of Scedosporium apiospermum, Fusarium spp. and Sporothrix schenckii also show primary resistance, whereas all strains of Scedosporium prolificans demonstrate resistance. The main problems associated with the use of conventional amphotericin B have always been due to its poor aqueous solubility and toxicity rather than antifungal resistance.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge