English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Toxicology 2000-Dec

An approach to cancer risk assessment for the food constituent 2-hexenal on the basis of 1,N2-propanodeoxyguanosine adducts of 2-hexenal in vivo.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
E Eder
D Schuler

Keywords

Abstract

2-Hexenal is formed by plants, and humans are regularly exposed to this mutagenic/genotoxic compound via vegetable foods. 2-Hexenal has not been tested for carcinogenicity, but it forms exocyclic 1,N2-propanodeoxyguanosine adducts like other carcinogenic alpha,beta-unsaturated carbonyl compounds. To quantify the respective DNA adducts as an approach to a theoretical cancer risk assessment, we used a newly developed 32P-postlabelling technique based on nuclease P1 enrichment, allowing a detection limit of 3 adducts per 10(8) nucleotides. Adduct levels were measured at different doses and the covalent binding index (CBI) was found to be dose-dependent. This can be explained by glutathione depletion at higher doses. The CBI at low doses was 0.06. A negligible cancer risk of 1-5 per 10(7) lives was estimated on the basis of TD50 values calculated from the correlation between CBI and TD50 of Lutz and on the daily intake of 2-hexenal via vegetable foods, fruit juices and black tea. A risk of 1.6-8.5 per 10(6) lives was estimated for the hypothetical case of glutathione depletion, e.g. due to consuming special medicaments. In every case, the benefit from eating fruit and vegetables is clearly higher than a possible low and unavoidable cancer risk. Utilization of 2-hexenal as a flavouring agent or as a fungicide, breeding fungus-resistant plants or technological gene construction of fungus resistance may lead to a high hypothetical cancer risk of 2-6 per 10(4) lives under certain circumstances which are avoidable and deserves special case-by-case consideration.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge