English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of the American Chemical Society 2010-Jul

An array-based method to identify multivalent inhibitors.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yalong Zhang
Qian Li
Luis G Rodriguez
Jeffrey C Gildersleeve

Keywords

Abstract

Carbohydrate-protein interactions play a critical role in a variety of biological processes, and agonists/antagonists of these interactions are useful as biological probes and therapeutic agents. Most carbohydrate-binding proteins achieve tight binding through formation of a multivalent complex. Therefore, both ligand structure and presentation contribute to recognition. Since there are many potential combinations of structure, spacing, and orientation to consider and the optimal one cannot be predicted, high-throughput approaches for analyzing carbohydrate-protein interactions and designing inhibitors are appealing. In this report, we develop a strategy to vary neoglycoprotein density on a surface of a glycan array. This feature of presentation was combined with variations in glycan structure and glycan density to produce an array with approximately 600 combinations of glycan structure and presentation. The unique array platform allows one to distinguish between different types of multivalent complexes on the array surface. To illustrate the advantages of this format, it was used to rapidly identify multivalent probes for various lectins. The new array was first tested with several plant lectins, including concanavalin A (conA), Vicia villosa isolectin B4 (VVL-B(4)), and Ricinus communis agglutinin (RCA120). Next, it was used to rapidly identify potent multivalent inhibitors of Pseudomonas aeruginosa lectin I (PA-IL), a key protein involved in opportunistic infections of P. aeruginosa , and mouse macrophage galactose-type lectin (mMGL-2), a protein expressed on antigen presenting cells that may be useful as a vaccine targeting receptor. An advantage of the approach is that structural information about the lectin/receptor is not required to obtain a multivalent inhibitor/probe.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge