English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Insect Physiology 2004-Jun

An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits the expression of an antibacterial peptide, cecropin, of the beet armyworm, Spodoptera exigua.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Dongjin Ji
Yonggyun Kim

Keywords

Abstract

An entomopathogenic bacterium, Xenorhabdus nematophila, is known to depress hemocyte nodule formation of target insects by inhibiting eicosanoid biosynthesis. This study analyzed the inhibitory effect of X. nematophila on the humoral immunity of the target insects and tested its association with the host eicosanoid pathway. Plasma collected from the fifth instar larvae of Spodoptera exigua, when they were injected with X. nematophila, did not show antibacterial activity against Escherichia coli by a growth inhibition zone assay. In comparison, heat-killed X. nematophila induced significant antibacterial activity in the plasma. The antibacterial humoral activity was further demonstrated by examining a specific potent antibacterial peptide, cecropin. Two cecropin genes ('A' and 'B') were partially cloned from the fifth instar larvae of S. exigua by conserved degenerate primers using nested reverse transcriptase-polymerase chain reaction (RT-PCR). They showed high homologies with known cecropins from other lepidopteran species. Northern analysis using the cecropin probe showed that the injection of the heat-killed X. nematophila induced significant expression of a cecropin mRNA transcript (approximately 1.1 kb), but the larvae injected with the live bacteria did not show the corresponding transcript. Injection of arachidonic acid did not rescue the inhibition of X. nematophila based on either antibacterial activity or cecropin gene expression. The addition of dexamethasone, a specific phospholipase A2 inhibitor, did not inhibit antibacterial activity or cecropin gene expression when the larvae were injected with heat-killed X. nematophila. These results suggest that X. nematophila inhibits the antibacterial humoral immune reaction as well as the cellular immune reaction in S. exigua and that the inhibition of X. nematophila on the expression of the antibacterial peptide is not associated with inhibition of the eicosanoid pathway.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge