English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of General Virology 2006-Apr

An essential role of ERK signalling in TPA-induced reactivation of Kaposi's sarcoma-associated herpesvirus.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Adina Cohen
Chaya Brodie
Ronit Sarid

Keywords

Abstract

Kaposi's sarcoma-associated herpesvirus (KSHV) is implicated causally in the development of several human malignancies, including primary effusion lymphoma (PEL). PEL cells serve as tools for KSHV research, as most of them are latently infected and allow lytic virus replication in response to various stimuli. 12-O-Tetradecanoyl-phorbol-13-acetate (TPA) is the most potent inducer of lytic KSHV reactivation; nevertheless, the exact mechanism by which it induces reactivation remains unknown. It has previously been reported by our group that the protein kinase C (PKC) delta isoform plays a crucial role in TPA-mediated KSHV reactivation. Here, the activation pathway was dissected and it was demonstrated that TPA induces KSHV reactivation via stimulation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway. Western blot analysis revealed a rapid phosphorylation of ERK1/2. Cells treated with MAPK/ERK inhibitors before TPA addition demonstrated repression of ERK1/2 phosphorylation, which was associated with a block of KSHV lytic-gene expression. This inhibition prevented c-Fos accumulation, yet increased c-Jun phosphorylation. Similar results were obtained in response to rottlerin, a selective PKCdelta inhibitor. Notably, the PKC inhibitor GF 109203X reduced ERK1/2 phosphorylation, c-Fos accumulation, c-Jun phosphorylation and KSHV reactivation. It is proposed that TPA induces KSHV reactivation through at least two arms. The first involves PKCdelta, ERK phosphorylation and c-Fos accumulation, whilst the second requires another PKC isoform that induces the phosphorylation of c-Jun. c-Fos and c-Jun jointly form an active AP-1 complex, which functions to activate the lytic cascade of KSHV.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge