English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Medicinal Research Reviews 2013-Jul

An overview of phenylcyclopropylamine derivatives: biochemical and biological significance and recent developments.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mohammed Naseer Ahmed Khan
Takayoshi Suzuki
Naoki Miyata

Keywords

Abstract

trans-2-Phencylcyclopropylamine (2-PCPA), a potent, clinically used antidepressant, affects monoamine neurotransmitter levels by inhibiting the main metabolizing enzymes, monoamine oxidases (MAOs). However, the antidepressant action of this compound was not fully explained by its effects on MAOs due to its wide variety of biological effects. 2-PCPA also affects depression-associated pathophysiological pathways, and linked with increased levels of trace amines in brain, upregulation of GABAB receptors (where GABA is gamma amino butyric acid), modulation of phospholipid metabolism, and interference with various cytochrome P450 (CYP) enzymes. Consequently, despite its adverse effects and limited clinical applicability, 2-PCPA has attracted interest as a structural scaffold for the development of mechanism-based inhibitors of various enzymes, including lysine-specific demethylase 1 (LSD1), which is a possible target for cancer chemotherapy. In the recent years, many reports have appeared in the literature based on 2-PCPA scaffold and their potential medicinal implications. This review mainly focuses on the medicinal chemistry aspects including drug design, structure-activity relationships (SAR), biological and biochemical properties, and mechanism of actions of 2-PCPA and its derivatives. Furthermore, we also highlight recent advance in this area and discuss their future applications for beneficial therapeutic effects.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge