English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cerebral Blood Flow and Metabolism 2009-Mar

Angiotensin II modulates BBB permeability via activation of the AT(1) receptor in brain endothelial cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Melissa A Fleegal-DeMotta
Shinya Doghu
William A Banks

Keywords

Abstract

Hypertensive encephalopathy occurs when acute changes in blood pressure cause breakdown of the blood-brain barrier (BBB). Angiotensin II (Ang II) plays a role in this pathophysiology. We determined whether Ang II directly regulates endothelial cell function at the BBB. In BBB microvessel endothelial cells (MECs), the Ang II (100 nmol/L; 0 to 6 h) effects on permeability to (125)I-albumin and transendothelial electrical resistance (TEER) were assessed. Angiotensin II (100 nmol/L) caused significant time-dependent changes in both (125)I-albumin permeability (25%) at 2 h and TEER (-8.87 Omega x cm(2)) at 6 h. Next, MECs were pretreated with the Ang II type 1 (AT(1)) receptor blocker telmisartan (1 micromol/L) or the Ang II type 2 (AT(2)) receptor blocker PD123,319 (1 micromol/L) followed by treatment with Ang II (100 nm). Telmisartan completely inhibited the Ang II-induced increase in (125)I-albumin permeability in MECs whereas PD123,319 had no effect. Using western blot analysis, we showed that MECs express AT(1) receptors but not AT(2) receptors. Treatment with Ang II (100 nmol/L; 0 to 6 h) also increased total protein kinase C activity. In contrast, Ang II had no effect on the expression of occludin, claudin 5, or actin. These results show that Ang II directly modulates transcytotic and paracellular permeability in BBB endothelial cells and could contribute to the pathophysiology of hypertensive encephalopathy.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge