English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecules 2019-Nov

Anti-Amyloidogenic Effects of Asarone Derivatives From Perilla frutescens Leaves against Beta-Amyloid Aggregation and Nitric Oxide Production.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jae Lee
Nayeon Kim
Ji Yeo
Dae-Gun Seo
Sunggun Kim
Jae-Sun Lee
Kwang Hwang
So-Young Park

Keywords

Abstract

Alzheimer's disease (AD) is a progressive, neurodegenerative brain disorder associated with loss of memory and cognitive function. Beta-amyloid (Aβ) aggregates, in particular, are known to be highly neurotoxic and lead to neurodegeneration. Therefore, blockade or reduction of Aβ aggregation is a promising therapeutic approach in AD. We have previously reported an inhibitory effect of the methanol extract of Perilla frutescens (L.) Britton (Lamiaceae) and its hexane fraction on Aβ aggregation. Here, the hexane fraction of P. frutescens was subjected to diverse column chromatography based on activity-guided isolation methodology. This approach identified five asarone derivatives including 2,3-dimethoxy-5-(1E)-1-propen-1-yl-phenol (1), β-asarone (2), 3-(2,4,5-trimethoxyphenyl)-(2E)-2-propen-1-ol (3), asaronealdehyde (4), and α-asarone (5). All five asarone derivatives efficiently reduced the aggregation of Aβ and disaggregated preformed Aβ aggregates in a dose-dependent manner as determined by a Thioflavin T (ThT) fluorescence assay. Furthermore, asarone derivatives protected PC12 cells from Aβ aggregate-induced toxicity by reducing the aggregation of Aβ, and significantly reduced NO production from LPS-stimulated BV2 microglial cells. Taken together, these results suggest that asarone derivatives derived from P. frutescens are neuroprotective and have the prophylactic and therapeutic potential in AD.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge