English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Steroid Biochemistry and Molecular Biology 2017-Apr

Anti-fibrotic effects of chronic treatment with the selective FXR agonist obeticholic acid in the bleomycin-induced rat model of pulmonary fibrosis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Paolo Comeglio
Sandra Filippi
Erica Sarchielli
Annamaria Morelli
Ilaria Cellai
Francesca Corcetto
Chiara Corno
Elena Maneschi
Alessandro Pini
Luciano Adorini

Keywords

Abstract

Farnesoid X receptor (FXR) activation by obeticholic acid (OCA) has been demonstrated to inhibit inflammation and fibrosis development in liver, kidney and intestine in multiple disease models. FXR activation has also been demonstrated to suppress the inflammatory response and to promote lung repair after lung injury. This study investigated the protective effects of OCA treatment (3 or 10mg/kg/day) on inflammation, tissue remodeling and fibrosis in the bleomycin-induced pulmonary fibrosis rat model. Effects of OCA treatment on morphological and molecular alterations of the lung, as well as remodeling of the alveoli and the right ventricle were also evaluated. Lung function was assessed by measuring airway resistance to inflation. In the acute phase (7days), bleomycin promoted an initial thickening and fibrosis of the lung interstitium, with upregulation of genes related to epithelial proliferation, tissue remodeling and hypoxia. At 28days, an evident increase in the deposition of collagen in the lungs was observed. This excessive deposition was accompanied by an upregulation of transcripts related to the extracellular matrix (TGFβ1, SNAI1 and SNAI2), indicating lung fibrosis. Administration of OCA protected against bleomycin-induced lung damage by suppressing molecular mechanisms related to epithelial-to-mesenchymal transition (EMT), inflammation and collagen deposition, with a dose-dependent reduction of proinflammatory cytokines such as IL-1β and IL-6, as well as TGF-β1 and SNAI1 expression. Pirfenidone, a recently approved treatment for idiopathic pulmonary fibrosis (IPF), significantly counteracted bleomycin-induced pro-fibrotic genes expression, but did not exert significant effects on IL-1β and IL-6. OCA treatment in bleomycin-challenged rats also improved pulmonary function, by effectively normalizing airway resistance to inflation and lung stiffness in vivo. Results with OCA were similar, or even superior, to those obtained with pirfenidone. In conclusion, our results suggest an important protective effect of OCA against bleomycin-induced lung fibrosis by blunting critical mediators in the pathogenesis of IPF.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge