English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neurochemistry International 2019-Aug

Anti-hyperalgesic effect of (-)-α-bisabolol and (-)-α-bisabolol/β-Cyclodextrin complex in a chronic inflammatory pain model is associated with reduced reactive gliosis and cytokine modulation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Laíza Fontinele
Luana Heimfarth
Erik Pereira
Marília Rezende
Natália Lima
Yasmim de Carvalho
Elisana Pires
Adriana Guimarães
Mikaella Carvalho
Rosana Barreto

Keywords

Abstract

Chronic pain is a continuous or recurring pain which exceeds the normal course of recovery to an injury or disease. According to the origin of the chronic pain, it can be classified as inflammatory or neuropathic. This study aimed to evaluate the antinociceptive and anti-inflammatory effect of (-)-α-bisabolol (BIS) alone and complexed with β-cyclodextrin (βCD) in preclinical models of chronic pain. Chronic pain was induced by Freund's Complete Adjuvant (FCA) or partial lesion of the sciatic nerve (PLSN). Swiss mice were treated with BIS, BIS-βCD (50 mg/kg, p.o) or vehicle (control) and mechanical hyperalgesia, thermal hyperalgesia, muscle strength and motor coordination were evaluated. In addition, levels of TNF-α and IL-10 and expression of the ionized calcium-binding adapter protein (IBA-1) were assessed in the spinal cord of the mice. The complexation efficiency of BIS in βCD was evaluated by High-Performance Liquid Chromatography. BIS and BIS-βCD reduced (p < 0.001) mechanical and thermal hyperalgesia. No alterations were found in force and motor coordination. In addition, BIS and BIS-βCD inhibited (p < 0.05) TNF-α production in the spinal cord and stimulated (p < 0.05) the release of IL-10 in the spinal cord in PLSN-mice. Further, BIS and BIS-βCD reduced IBA-1 immunostaining. Therefore, BIS and BIS-βCD attenuated hyperalgesia, deregulated cytokine release and inhibited IBA-1 expression in the spinal cord in the PLSN model. Moreover, our results show that the complexation of BIS in βCD reduced the therapeutic dose of BIS. We conclude that BIS is a promising molecule for the treatment of chronic pain.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge