English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Burns 2015-Mar

Anti-inflammative effect of glycyrrhizin on rat thermal injury via inhibition of high-mobility group box 1 protein.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Liangyun Shen
Ziwei Cui
Yue Lin
Shuqin Wang
Dongfeng Zheng
Qian Tan

Keywords

Abstract

OBJECTIVE

Glycyrrhizin (Gly) has been reported as an inhibitor of extracellular HMGB1 (high-mobility group box 1 protein) cytokine's activity, and protects spinal cord, liver, heart and brain against ischemia-reperfusion-induced injury in rats. The purpose of this study was to investigate the protective effect of Gly in rat skin thermal injury model and to elucidate the underlying mechanisms.

METHODS

Twenty-four male Sprague-Dawley rats (200-250g) were randomly divided into control group, vehicle-treated and Gly-treated burn groups, each group contained eight animals. In the latter two groups, rats were subjected to 30% TBSA (Total Body Surface Area) full-thickness scald injury. In Gly-treated burn group, glycyrrhizin (60mg/kg) was administered intraperitoneally immediately after and at 24th hour burn; in vehicle-treated burn group, Ringer's solution (4ml/kg, as a vehicle) was administered intraperitoneally immediately after and at 24th hour burn. The animals were sacrificed at 48h after injury. Aortic blood samples were obtained to detect tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) with ELISA (Enzyme-Linked Immuno Sorbent Assay) kits. Lung, liver and kidney tissue samples were collected to determine the expression of HMGB1 mRNA and protein. HMGB1 mRNA level was semiquantitatively measured by Real-Time PCR using β-actin as an internal standard, and protein expression of HMGBI was determined by Western blot.

RESULTS

Severe skin scald injury caused a significant increase in plasma TNF-α and IL-1β versus the control group (P<0.001) in 48h after burns. Intraperitoneal administration of Gly (60mg/kg) significantly reduced the levels of serum TNF-α and IL-1β (P<0.01). Gly treatment reduced these biochemical indices accompanied by lower level of HMGB1 protein (P<0.05) and mRNA expression (P<0.01).

CONCLUSIONS

These results demonstrate that Gly possesses an anti-inflammation effect to protect the remote organs from burn-induced injury.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge