English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Pharmaceutics 2018-Dec

Anti-inflammatory and anti-cancer activity of citral: Optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMiSizer®.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Aleksandra Zielińska
Carlos Martins-Gomes
Nuno R Ferreira
Amélia M Silva
Izabela Nowak
Eliana B Souto

Keywords

Abstract

Essential oils containing monoterpenes are widely used in pharmaceuticals and cosmetic products on account of their wide range of bioactive properties (including anti-cancer activity). Two monoterpenes (citral and geraniol) were firstly tested for their anti-inflammatory activity in a RAW 264.7 cell line, demonstrating citral to have enhanced capacity to inhibit NO production (ca. 84% for citral and 52% for geraniol at the lowest tested concentration of 5 µg/ml). As citral showed higher NO inhibitory activity than geraniol, to measure the level of cytotoxicity of citral, AlamarBlue reduction assay was run in two cell models (non-tumoral HaCaT and tumoral A431). Citral exhibited a strong cytotoxic effect in both cell lines, i.e. cell viability lower that 10% after 24 h exposure at 100 µg/ml of monoterpene. An optimized solid lipid nanoparticles (SLNs) formulation for citral was further developed by design of experiments (22 factorial design), followed by accelerated stability testing (LUMiSizer®). An optimal SLN composed of 1 wt% of citral, 4 wt% of lipid and 2.5 wt% surfactant were successfully produced by hot high pressure homogenization (hot HPH) showing a mean particle size (Z-Ave) of 97.7 nm and polydispersity index of 0.249. The produced formulations were analyzed in a high-end dispersion analyzer LUMiSizer® to characterize any demixing phenomena, demonstrating to be long-term stable at room temperature (25 °C), exhibiting very low instability indices (0.032 after production and 0.042 after one month of storage).

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge