English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Food and Chemical Toxicology 2019-Nov

Anti-inflammatory effect of nano-encapsulated nerolidol on zymosan-induced arthritis in mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Eloísa de Souza
Gabriela Trindade
Marcelo Gomes
Luiz Silva
Renata Grespan
Lucindo Quintans
Ricardo Júnior
Saravanan Shanmugan
Adriano Araújo

Keywords

Abstract

Nerolidol is naturally occurring sesquiterpene has wide range of biological properties including anti-inflammatory activity. However, it has high volatility with low solubility in nature. The present study aimed to develop and characterized nano-encapsulated nerolidol and evaluated its activity on zymosan-induced arthritis model. Nano-capsules were produced by interfacial deposition of preformed polymer method and characterized by particle size, pH, polydispersity index (PDI), zeta potential, drug content and transmission electron microscopy (TEM). In vitro cytotoxicity of formulations was evaluated by alamar blue and MTT assays. In vivo neutrophils migration assay was performed on intra-articular zymosan-induced arthritis model in mice. Nano-encapsulated nerolidol suspensions presented adequate properties: mean diameter of particles 219.5 ± 8.4 nm, pH: 6.84 ± 0.5, PDI≤0.2, the zeta potential was -20.3 ± 3.6 mV and drug content 71,2 ± 1.3%. The formulations did not demonstrated cytotoxicity under the conditions assessed. Nerolidol 300 mg/kg inhibited neutrophils migration into joint cavity by 18.8% remains compared with control group, and nano-encapsulated nerolidol 3 mg/kg inhibited (26.7% remains) similar to free nerolidol 10 mg/kg (27.4% remains). Histological, quantification of pro-inflammatory and anti-inflammatory cytokines proves the same results. In conclusion the data suggests that nanoencapsulation of nerolidol improved its anti-inflammatory effect on arthritis in mice.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge