English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Immunopharmacology 2012-Sep

Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Sun Young Park
Mei Ling Jin
Young Hun Kim
YoungHee Kim
Sang Joon Lee

Keywords

Abstract

Amyloid β (Aβ) induces the production of neuroinflammatory molecules, which may contribute to the pathogenesis of numerous neurodegenerative diseases. Therefore, suppression of neuroinflammatory molecules could be developed as a therapeutic method. Aromatic (ar)-turmerone, turmeric oil isolated from Curcuma longa, has long been used in Southeast Asia as both a remedy and a food. In this study, we investigated the anti-inflammatory effects of ar-turmerone in BV2 microglial cells. Aβ-stimulated microglial cells were tested for the expression and activation of MMP-9, iNOS, and COX-2, the production of proinflammatory cytokines, chemokines, and ROS, as well as the underlying signaling pathways. Ar-turmerone significantly suppressed Aβ-induced expression and activation of MMP-9, iNOS, and COX-2, but not MMP-2. Ar-turmerone also reduced TNF-α, IL-1β, IL-6, and MCP-1 production in Aβ-stimulated microglial cells. Further, ar-turmerone markedly inhibited the production of ROS. Impaired translocation and activation of NF-κB were observed in Aβ-stimulated microglial cells exposed to ar-turmerone. Furthermore, ar-turmerone inhibited the phosphorylation and degradation of IκB-α as well as the phosphorylation of JNK and p38 MAPK. These results suggest that ar-turmerone impaired the Aβ-induced inflammatory response of microglial cells by inhibiting the NF-κB, JNK, and p38 MAPK signaling pathways. Lastly, ar-turmerone protected hippocampal HT-22 cells from indirect neuronal toxicity induced by activated microglial cells. These novel findings provide new insights into the development of ar-turmerone as a therapeutic agent for the treatment of neurodegenerative disorders.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge