English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Experimental and Therapeutic Medicine 2018-Apr

Anti-proliferative effect of isorhamnetin on HeLa cells through inducing G2/M cell cycle arrest.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Juan Wei
Hailan Su
Yang Bi
Jixin Li
Lidan Feng
Wenjun Sheng

Keywords

Abstract

As a major cancer type in females, cervical cancer has been explored in depth by researchers. HeLa is a cervical cancer cell line. Isorhamnetin is an O-methylated flavonol that is primarily extracted from sea buckthorn. In the present study, the anti-proliferative effect of isorhamnetin on HeLa cells was evaluated using a Trypan blue dye exclusion assay. Isorhamnetin inhibited the cell proliferation in a time- and dose-dependent manner. Flow cytometric analysis of the cell cycle distribution revealed that isorhamnetin inhibited the cell cycle progression of HeLa by causing G2/M phase arrest and decreasing the proportion of cells in G1 phase. In addition, western blot analysis was performed to evaluate the presence of certain cell cycle-associated proteins. It was demonstrated that isorhamnetin inhibited the protein expression of cyclin B1, cell division cycle 25C (Cdc25C) and Cdc2, but enhanced checkpoint kinase 2 (Chk2), Cdc25C and Cdc2 phosphorylation. In addition, tubulin depolymerization participated in the isorhamnetin-induced cell cycle arrest in G2/M phase. In conclusion, the present results indicated that the anti-proliferative action of isorhamnetin is associated with arrest of the cell cycle in G2/M phase, which is a consequence of activation of the ataxia telangiectasia mutated Chk2 pathway and disruption of microtubule function.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge