English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Annals of Clinical Microbiology and Antimicrobials 2015-Apr

Antibacterial, antibiofilm and cytotoxic activities of Terminalia fagifolia Mart. extract and fractions.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Alyne Rodrigues de Araujo
Patrick Veras Quelemes
Márcia Luana Gomes Perfeito
Luíza Ianny de Lima
Melka Coêlho Sá
Paulo Humberto Moreira Nunes
Graziella Anselmo Joanitti
Peter Eaton
Maria José Dos Santos Soares
José Roberto de Souza de Almeida Leite

Keywords

Abstract

BACKGROUND

The methicillin resistance of bacteria from the genus Staphylococcus and its ability to form biofilms are important factors in pathogenesis of these microorganisms. Thus, the search for new antimicrobials agents, especially from plants, has been intensified. In this context, Terminalia species have been the subject of research for many pharmacological activities. In this study we evaluated the antibacterial, antibiofilm and cytotoxic activities of the ethanol extract (EtE) from Terminalia fagifolia stem bark as well as that of three fractions of the extract (AqF, HaF and WSF).

METHODS

We determined the minimum inhibitory concentration (MIC) by microdilution in 96-well plates, where the strains were exposed to serial dilutions of the ethanol extract and fractions, ranging from 12.5 to 400 μg/mL. We then determined the minimum bactericidal concentration (MBC), seeding the inoculum (10 μL) with concentrations equal to or greater than the MIC in Mueller-Hinton agar. To test the antibiofilm activity biofilm formation was induced in the presence of concentrations equivalent to 1/2, 1/4 and 1/8 of the MIC extract or fraction tested. In addition, the effect of the EtE and the fractions on cell viability was tested by the MTT assay on human MCF-7 breast cancer and mouse fibroblast NIH/3T3. To obtain high-resolution images of the effect of the aqueous fraction on the bacterial morphology, atomic force microscopy (AFM) imaging of treated S. aureus cells was performed.

RESULTS

We observed antibacterial activity of EtE and fractions with MICs ranging from 25-200 μg/mL and MBCs ranging from 200-400 μg/mL. Regarding antibiofilm activity, both the EtE as the AqF, HaF and WSF fractions showed significant inhibition of the biofilm formation, with inhibition of biofilms formation of over 80% for some strains. The EtE and fractions showed a moderate cytotoxicity in cell line NIH/3T3 viability and potential antitumoral activity on human breast cancer cell line MCF-7. The microscopic images obtained revealed morphological changes to the S. aureus ATCC 29213 surface caused by AqF, as well as significant size alterations.

CONCLUSIONS

The results show potential antibacterial, antibiofilm and antitumoral activities of the ethanol extract and fractions of T. fagifolia.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge