English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
DARU, Journal of Pharmaceutical Sciences 2014-Jan

Antidepressant effects of crocin and its effects on transcript and protein levels of CREB, BDNF, and VGF in rat hippocampus.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Faezeh Vahdati Hassani
Vahideh Naseri
Bibi Marjan Razavi
Soghra Mehri
Khalil Abnous
Hossein Hosseinzadeh

Keywords

Abstract

BACKGROUND

Antidepressants have been shown to affect levels of brain-derived neurotrophic factor (BDNF) and VGF (non-acronymic) whose transcriptions are dependent on cAMP response element binding protein (CREB) in long term treatment. The aim of this study was to verify the subacute antidepressant effects of crocin, an active constituent of saffron (Crocus sativus L.), and its effects on CREB, BDNF, and VGF proteins, transcript levels and amount of active, phosphorylated CREB (P-CREB) protein in rat hippocampus.

METHODS

Crocin (12.5, 25, and 50 mg/kg), imipramine (10 mg/kg; positive control) and saline (1 mL/kg; neutral control) were administered intraperitoneally (IP) to male Wistar rats for 21 days. The antidepressant effects were studied using the forced swimming test (FST) on day 21 after injection. Protein expression and transcript levels of genes in the rat hippocampus were evaluated using western blot and quantitative reverse transcription-polymerase chain reaction (qRT-PCR), respectively.

RESULTS

Crocin significantly reduced the immobility time in the FST. Western blot analysis showed that 25 and 50 mg/kg of crocin increased the levels of CREB and BDNF significantly and dose dependently. All doses of crocin increased the VGF levels in a dose-dependent manner. Levels of p-CREB increased significantly by 50 mg/kg dose of crocin. Only 12.5 mg/kg crocin could significantly increase the transcript levels of BDNF. No changes in CREB and VGF transcript levels were observed in all groups.

CONCLUSIONS

These results suggest that crocin has antidepressant-like action by increasing CREB, BDNF and VGF levels in hippocampus.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge