English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pharmaceutical Biology 2011-Feb

Antidiabetic potential of α-amylase inhibitor from the seeds of Macrotyloma uniflorum in streptozotocin-nicotinamide-induced diabetic mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Laxmi H Gupta
Sachin L Badole
Subhash L Bodhankar
Sushma G Sabharwal

Keywords

Abstract

BACKGROUND

Macrotyloma uniflorum (Lam.) Verdc. (Leguminosae) seeds, known as the poor man's pulse crop in India, have been used as a food and also used in the traditional method for treatment of kidney stones, diabetes, obesity, etc.

OBJECTIVE

To investigate the antidiabetic effect of α-amylase inhibitor isolated from the seeds of Macrotyloma uniflorum seeds in streptozotocin-nicotinamide induced diabetic mice.

METHODS

α-Amylase inhibitor was purified using a carboxymethyl cellulose (CMC) column. Kinetic studies were done using mouse pancreatic and human salivary α-amylase. Its antidiabetic effect was studied in streptozotocin-nicotinamide-induced diabetic mice. Biochemical parameters such as serum total cholesterol, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were determined. Histopathological investigation was performed on the pancreas, kidney, and liver tissue samples.

RESULTS

Macrotyloma uniflorum α-amylase inhibitor (MUAI) inhibited both the mouse pancreatic and human salivary α-amylase in a non-competitive manner with K(i) values of 11 and 8.8 µM and IC(50) value of 30 and 12.5 µg/mL, respectively. It decreased the serum glucose level in the treated diabetic mice. Histological findings suggested minimum pathological changes in the treated diabetic mice as compared to the diabetic control.

CONCLUSIONS

The results suggest that MUAI has an antihyperglycemic activity and therefore can be used in the dietary treatment of non-insulin dependent diabetes mellitus.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge