English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 2018-Oct

Antifungal stilbene impregnation: transport and distribution on the micron-level.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Martin Felhofer
Batirtze Prats-Mateu
Peter Bock
Notburga Gierlinger

Keywords

Abstract

The transition from the living water-transporting sapwood to heartwood involves in many tree species impregnation with extractives. These differ in amount and composition, and enhance resistance against bacteria, insects or fungi. To understand the synthesis, transport and impregnation processes new insights into the biochemical processes are needed by in-situ methods. Here we show the extractive distribution in pine (Pinus sylvestris) microsections with a high lateral resolution sampled in a non-destructive manner using Confocal Raman Microscopy. Integrating marker bands of stilbenes and lipids enables to clearly track the rapid change from sapwood to heartwood within one tree ring. The higher impregnation of the cell corner, compound middle lamella, the S3 layer and pits reveals the optimization of decay resistance on the micron-level. Furthermore, deposits with changing chemical composition are elucidated in the rays and lumen of the tracheids. The spectral signature of these deposits shows the co-location of lipids and pinosylvins with changing ratios from the living to the dead tissue. The results demonstrate that the extractive impregnation on the micro- and nano-level is optimized by a symbiotic relationship of lipids and pinosylvins to enhance the tree's resistance and lifetime.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge