English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ayurveda and Integrative Medicine 2018-Oct

Antimicrobial effect of herbal extract of Acacia arabica with triphala on the biofilm forming cariogenic microorganisms.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Karthikeyan Ramalingam
Bennett T Amaechi

Keywords

Abstract

BACKGROUND

Dental caries is a biofilm-related infectious disease with a multifactorial etiology, over five billion inhabitants have affected worldwide due to this disease.

OBJECTIVE

Antimicrobial efficacy of a mixed herbal powder extract (MHPE) against cariogenic microorganisms was investigated.

METHODS

MIC, MBC, kinetics of killing, biofilm disruption and anticaries effect of MHPE were determined. For biofilm disruption, biofilms of Streptococcus mutans, Lactobacillus casei, Actinomyces viscosus and Candida albicans were treated with MHPE for 30 min and attached cells were quantified after staining. For live/dead staining biofilm assay, S. mutans biofilm treated with MHPE for 1min, 5min and 1 h was examined with confocal laser scanning system after live/dead staining. Efficacy was experimented by structural quality using Scanning Electron Microscope (SEM). Anticaries effect was determined by formation of caries-like lesion in continuous flow biofilm model.

RESULTS

MHPE exhibited inhibition zones ranging from 12.5 to 24.0 mm. The highest inhibition zone was recorded at concentration of 50 μg/ml. MIC for S. mutans was between 12.23 and 36.7 μg/ml, while the MBC values ranged from 36.7 to 110.65 μg/ml. Inhibitory concentration of MHPE was three fold higher than CHLX. Significant reduction of cell count (49-95%) was observed with increasing time and higher concentration. Percentage biofilm reduction compare with negative control was 96.9% (A. viscosus), 94% (C. albicans), 99.8% (L. casei) and 91.7% (S. mutans). For MHPE-treated biofilm, live/dead staining demonstrated significant (p < 0.05) higher in deceased red fluorescence areas in all kinetics points from 53.6% (1min) to 85% (1h). SEM confirmed the damage in the outer layers of S. mutans. MHPE has components with effective antibacterial activity against caries-inducing microorganisms.

CONCLUSIONS

The anti-adherence and anti-biofilm effect as well as the faster killing activity suggests that MHPE formula has effective antibacterial activity and could be a useful source of anti-cariogenic agents in near future.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge