English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Materials Science and Engineering C 2019-May

Antimicrobial properties and biocompatibility of electrospun poly-ε-caprolactone fibrous mats containing Gymnema sylvestre leaf extract.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Raghavendra Ramalingam
Chetna Dhand
Chak Leung
Seow Ong
Sathesh Annamalai
Mohammed Kamruddin
Navin Verma
Seeram Ramakrishna
Rajamani Lakshminarayanan
Kantha Arunachalam

Keywords

Abstract

Wound care management presents one of the substantial and tenacious challenges to the healthcare systems worldwide. Microbial colonization and subsequent biofilm formation after injury have garnered much attention, as there is an appreciable correlation between biofilms formation and delayed healing in chronic wounds. Nanotechnology has emerged as a potential platform for the management of treating acute and chronic wounds. This study presents the utility of electrospun nanofiber mats containing a natural extract (Gymnema sylvestre) that averts biofilm formation but supports human dermal fibroblasts (hDFs) attachment. The scaffolds exhibited good wettability, enhanced mechanical properties and contact mediated inhibition of Gram-positive and Gram-negative bacteria. MTS viability assay and confocal imaging further confirmed that the natural extract loaded mats remained non-cytotoxic for hDFs. Overall these findings evidenced the suitability of the Gymnema sylvestre (GS) functionalized electrospun poly-ε-caprolactone (PCL) nanofibers, as an effective wound dressing with broad spectrum anti-bacterial properties.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge