English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Pharmacology 2014-Jun

Antinociceptive effects of AS1069562, the (+)-isomer of indeloxazine, on spinal hypersensitivity induced by intrathecal injection of prostaglandin in mice: comparison with duloxetine and amitriptyline.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Nobuhito Murai
Mina Tsukamoto
Seiji Tamura
Toshiaki Aoki
Nobuya Matsuoka

Keywords

Abstract

The (+)-isomer of indeloxazine AS1069562 exerts multiple pharmacological actions including the inhibition of serotonin (5-HT) and norepinephrine reuptake and analgesia in experimental animal pain models. Here, we evaluated the antinociceptive effects of AS1069562 and the antidepressants duloxetine and amitriptyline in mouse models of prostaglandin-induced spinal hypersensitivity. Prostaglandin E2 (PGE2) and F2α (PGF2α) were intrathecally administered to induce spinal hypersensitivity, causing tactile allodynia in mice. Allodynia induced by PGF2α but not by PGE2 was suppressed by desensitization of C-fibers with systemic pretreatment with resiniferatoxin. C-fiber hyperexcitability might therefore play a role in allodynia induced by PGF2α but not PGE2. In the PGE2-induced allodynia model, AS1069562 and duloxetine significantly suppressed allodynia, whereas amitriptyline did not. In the PGF2α-induced allodynia model, AS1069562 and amitriptyline significantly ameliorated allodynia, whereas duloxetine did not. To demonstrate the broad effects of AS1069562 compared to duloxetine, additional studies were conducted to elucidate other target mechanisms of AS1069562 beyond 5-HT and norepinephrine reuptake inhibition. AS1069562 exhibited affinity for both 5-HT1A and 5-HT3 receptors, and the analgesic effect of AS1069562 on PGF2α-induced allodynia was significantly blocked by the 5-HT1A receptor antagonist (S)-WAY100135 and the 5-HT3 receptor agonist SR57227. Taken together, these results indicate that AS1069562 inhibits both C-fiber- and non-C-fiber-dependent prostaglandin-induced allodynia, while duloxetine inhibits only non-C-fiber-triggered allodynia, and amitriptyline inhibits only C-fiber-triggered allodynia. These broad antinociceptive effects of AS1069562 may be due not only to 5-HT and norepinephrine reuptake inhibition but also to its effects on 5-HT receptors such as 5-HT1A and 5-HT3 receptors.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge