English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Frontiers in Plant Science 2018

Antioxidant Metabolism, Photosystem II, and Fatty Acid Composition of Two Tall Fescue Genotypes With Different Heat Tolerance Under High Temperature Stress.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Lianlian Hu
Aoyue Bi
Zhengrong Hu
Erick Amombo
Huiying Li
Jinmin Fu

Keywords

Abstract

Tall fescue (Festuca arundinacea Schreb.) is a typical and widely used cool-season turf grass. High temperature is a key factor that limits its utility. The objectives of this study were to investigate the behaviors of fatty acid composition and its gene expression patterns in heat-resistant genotype "TF71" and heat-sensitive genotype "TF133" exposed to heat stress (40/35°C, 14/10 h), and to broaden our comprehension about the relationship between heat tolerance and fatty acid function. The result showed that heat stress increased the malondialdehyde (MDA) content and relative electrolyte leakage (EL), but decreased the level of chlorophyll and the activity of superoxide dismutase (SOD) and peroxidase (POD) when compared to the controls, to a greater extent in "TF133." This result proved that "TF71" had superior high-temperature resistance. Furthermore, comparing the changes in the composition of fatty acid and the expression of the genes involved in its synthesis between the two different genotypes under heat stress, we found that heat stress increased the degree of unsaturation, UFA/SFA, and double bond index (DBI) in "TF71." Moreover, quantitative RT-PCR revealed that heat stress altered the expression of the genes involved in fatty acid synthesis, including ACAC, FabD, FabF, FabH, FabI, and FatA. According to these findings, we can speculate that increasing the unsaturation degree of fatty acid or controlling the equilibrium ratio of UFA/SFA might be closely associated with the improving of the heat resistance in tall fescue.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge